metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hiroshi Nakazawa,* Masumi Itazaki and Mari Owaribe

Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan

Correspondence e-mail: nakazawa@sci.osaka-cu.ac.jp

Key indicators

Single-crystal X-ray study T = 203 KMean σ (C–C) = 0.005 Å R factor = 0.070 wR factor = 0.116 Data-to-parameter ratio = 18.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Carbonyl(η^5 -cyclopentadienyl)(isocyanotriphenylborato- κC)(triphenylphosphine- κP)iron(II)

Received 3 May 2005 Accepted 13 May 2005

Online 21 May 2005

In the title compound, $[Fe(C_5H_5)(C_{19}H_{15}BN)(C_{18}H_{15}P)(CO)]$, the Fe^{II} atom is coordinated by a carbonyl group, a triphenylphosphine ligand, an isocyanotriphenylborate ligand and a cyclopentadienyl ligand in a piano-stool structure. Two crystallographically independent molecules exist in the asymmetric unit; the Fe-CN, C=N and CN-B bond distances are 1.866 (3), 1.157 (3) and 1.584 (4) Å, respectively, for one molecule, and 1.879 (3), 1.157 (3) and 1.587 (4) Å, respectively, for the other.

Comment

In the title compound, $[FeCp(CNBPh_3)(CO)(PPh_3)]$ (Cp is cyclopentadienyl), (I), the Fe^{II} atom is coordinated by a CO group, a triphenylphosphine ligand, an isocyanotriphenylborate ligand and a cyclopentadienyl (Cp) ring in an η^5 fashion, resulting in a typical piano-stool structure (Fig. 1). Only three crystal structures have been reported to date for iron–isocyanotriphenylborate complexes, namely [Fe(Me)-(CO)₂(PMe₃)₂(CNBPh₃)] (Ginderow, 1980), [Fe(TIM)-(CNBPh₃)₂] (TIM is 2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene; Amrhein *et al.*, 1996) and *trans*-[FeH(CNBPh₃)(dppe)₂] (dppe is diphenylphosphinoethane; Almeida *et al.*, 1999).

The Fe–CN distance [1.866 (3) Å] of the Fe1 molecule in (I) is the shortest among the reported structures; this distance is 1.910 (3) Å in [Fe(Me)(CO)₂(PMe₃)₂(CNBPh₃)] (Ginderow, 1980), 1.904 (3) Å in [Fe(TIM)(CNBPh₃)₂] (Amrhein *et al.*, 1996) and 1.914 (3) Å in *trans*-[FeH(CNBPh₃)(dppe)₂] (Almeida *et al.*, 1999). The Fe–C–N–B geometric parameters of the Fe1 and Fe2 molecules in (I) [N–B = 1.584 (4) and 1.587 (4) Å, Fe–C–N = 173.9 (3) and 174.6 (3)°, and C–N–B = 173.8 (3) and 177.0 (3)°] are similar to those in the previously reported complexes.

Experimental

 $[FeCp(CN)(CO)(PPh_3)]$ was prepared according to the literature method of Faller & Johnson (1975). To a solution of [FeCp(CN)-

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved (CO)(PPh₃)] (100 mg, 0.23 mmol) in CH₂Cl₂ (5 ml) was added trifluoromethanesulfonic acid (0.1 ml, 1.61 mmol), and the mixture was stirred for 1 h at 195 K. The solvent was then removed under reduced pressure to give a yellow oil. Diethyl ether (3 ml) and NaBPh₄ (700 mg, 2.05 mmol) were added to the oil. Stirring the resulting yellow solution for 10 min at room temperature caused the formation of a yellow solid. Volatile materials were removed under reduced pressure and the solid was washed repeatedly with EtOH and dried *in vacuo* to give [FeCp(CNBPh₃)(CO)(PPh₃)], (I), as a yellow powder (140 mg, 0.21 mmol, 92%). Single crystals of (I) were obtained by solvent diffusion at 253 K over a few days from an acetone layer containing (I) and an overlayer of EtOH. Spectroscopic analysis: IR (CH₂Cl₂): ν_{CO} 1985 cm⁻¹, ν_{CN} 2166 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, δ , p.p.m.): 4.61 (*s*, Cp, 5H), 7.01–7.42 (*m*, Ph, 30H); ³¹P NMR (161.7 MHz, CDCl₃, δ , p.p.m.): 69.0 (*s*).

 $D_x = 1.290 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation

reflections

 $\theta = 4.0-27.5^{\circ}$

T = 203.2 K

Prism, yellow

 $0.23 \times 0.08 \times 0.05 \text{ mm}$

 $\mu = 0.51 \text{ mm}^{-1}$

Cell parameters from 13 416

Crystal data

 $[Fe(C_5H_5)(C_{19}H_{15}BN)(C_{18}H_{15}P)-(CO)]$ $M_r = 679.39$ Monoclinic, $P2_1/c$ a = 15.1206 (6) Å b = 18.5827 (8) Å c = 24.890 (1) Å $\beta = 90.033$ (2)° V = 6993.7 (5) Å³ Z = 8

Data collection

Rigaku/MSC Mercury CCD areadetector diffractometer15 701 independent reflections ω scans1415 reflections with $I > 2\sigma(I)$ ω scans $R_{int} = 0.051$ Absorption correction: multi-scan $\theta_{max} = 27.5^{\circ}$ (Jacobson, 1998) $h = -19 \rightarrow 14$ $T_{min} = 0.755$, $T_{max} = 0.975$ $k = -16 \rightarrow 24$ 54 667 measured reflections $l = -29 \rightarrow 32$

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_{\rm o}^2) + (0.0137P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.070 & + 4.3115P] \\ wR(F^2) = 0.117 & where \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ S = 1.16 & (\Delta/\sigma)_{\rm max} < 0.001 \\ 15\ 701\ {\rm reflections} & \Delta\rho_{\rm max} = 0.31\ {\rm e}\ {\rm \AA}^{-3} \\ 865\ {\rm parameters} & \Delta\rho_{\rm min} = -0.28\ {\rm e}\ {\rm \AA}^{-3} \end{array}$

Table 1

Selected geometric parameters (Å, °).

Fe1-C1	2.086 (4)	Fe2-C47	2.097 (3)
Fe1-C2	2.099 (4)	Fe2-C48	2.099 (3)
Fe1-C3	2.108 (3)	Fe2-C49	1.752 (3)
Fe1-C4	2.103 (3)	Fe2-C50	1.879 (3)
Fe1-C5	2.087 (3)	Fe2-P2	2.2264 (9)
Fe1-C6	1.750 (4)	O1-C6	1.148 (4)
Fe1-C7	1.866 (3)	O2-C49	1.148 (4)
Fe1-P1	2.2248 (9)	N1-C7	1.157 (3)
Fe2-C44	2.108 (3)	N1-B1	1.584 (4)
Fe2-C45	2.109 (3)	N2-C50	1.157 (3)
Fe2-C46	2.087 (3)	N2-B2	1.587 (4)
C6-Fe1-C7	92.49 (14)	C50-Fe2-P2	94.70 (9)
C6-Fe1-P1	93.02 (12)	C7-N1-B1	173.8 (3)
C7-Fe1-P1	94.06 (9)	C50-N2-B2	177.0 (3)
C49-Fe2-C50	91.57 (13)	Fe1-C7-N1	173.9 (3)
C49-Fe2-P2	90.08 (10)	Fe2-C50-N2	174.6 (3)

Figure 1

A drawing of both Fe molecule of [FeCp(CNBPh₃)(CO)(PPh₃)], (I), showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

H atoms were refined using a riding model, with C-H = 0.95 Å and with fixed individual displacement parameters $[U_{iso}(H) = U_{eq}(C)]$.

Data collection: *CrystalClear* (Rigaku, 2001); cell refinement: *CrystalClear*; data reduction: *TEXSAN* (Molecular Structure Corporation, 2000); program(s) used to solve structure: *DIRDIF94* (Beurskens *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *TEXSAN*.

This work was supported by a Grant-in-Aid (No. 15205010) and by a Grant-in-Aid for Science Research on Priority Areas (No. 16033250, Reaction Control of Dynamic Complexes) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, by a Sasagawa Scientific Research Grant from the Japan Science Society, and by the Yamada Science Foundation.

References

- Almeida, S. S. P. R., da Silva, M. F. C. G, da Silva, J. J. R. F. & Pombeiro, A. J. L. (1999). J. Chem. Soc. Dalton Trans. pp. 467–472.
- Amrhein, P. I., Lough, A. J. & Morris, R. H. (1996). Inorg. Chem. 35, 4523– 4525.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., de Gelder, R., Israel, R. & Smits, J. M. M. (1994). *The DIRDIF94 Program System*. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

Faller, J. W. & Johnson, B. V. (1975). J. Organomet. Chem. 96, 99-113.

Ginderow, P. D. (1980). Acta Cryst. B36, 1950-1951.

Jacobson, R. (1998). Private communication to the Rigaku Corporation.

Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Molecular Structure Corporation (2000). *TEXSAN*. Version 1.11. MSC, 9009
New Trails Drive, The Woodlands, TX 77381-5209, USA.
Rigaku (2001). *CrystalClear*. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.